Structural Optimization of Azacryptands for Targeting Three-Way DNA Junctions

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

PIPIER Angélique CHETOT Titouan KALAMATIANOU Apollonia MARTIN Nicolas CAROFF Maëlle BRITTON Sébastien CHÉRON Nicolas TRANTÍREK Lukáš GRANZHAN Anton MONCHAUD David

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202409780
Doi http://dx.doi.org/10.1002/anie.202409780
Přiložené soubory
Popis Transient melting of the duplex-DNA (B-DNA) during DNA transactions allows repeated sequences to fold into non-B DNA structures, including DNA junctions and G-quadruplexes. These noncanonical structures can act as impediments to DNA polymerase progression along the duplex, thereby triggering DNA damage and ultimately jeopardizing genomic stability. Their stabilization by ad hoc ligands is currently being explored as a putative anticancer strategy since it might represent an efficient way to inflict toxic DNA damage specifically to rapidly dividing cancer cells. The relevance of this strategy is only emerging for three-way DNA junctions (TWJs) and, to date, no molecule has been recognized as a reference TWJ ligand, featuring both high affinity and selectivity. Herein, we characterize such reference ligands through a combination of in vitro techniques comprising affinity and selectivity assays (competitive FRET-melting and TWJ Screen assays), functional tests (qPCR and Taq stop assays), and structural analyses (molecular dynamics and NMR investigations). We identify novel azacryptands TrisNP-amphi and TrisNP-ana as the most promising ligands, interacting with TWJs with high affinity and selectivity. These ligands represent new molecular tools to investigate the cellular roles of TWJs and explore how they can be exploited in innovative anticancer therapies.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info