Algebraic weak factorisation systems I:accessible awfs

Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BOURKE John Denis GARNER Richard Henry George

Year of publication 2016
Type Article in Periodical
Magazine / Source Journal of Pure and Applied Algebra
MU Faculty or unit

Faculty of Science

Citation
Doi http://dx.doi.org/10.1016/j.jpaa.2015.06.002
Field General mathematics
Keywords Algebraic weak factorisation system. Double category. Accessibility.
Attached files
Description Algebraic weak factorisation systems (awfs) refine weak factorisation systems by requiring that the assignations sending a map to its first and second factors should underlie an interacting comonad–monad pair on the arrow category. We provide a comprehensive treatment of the basic theory of awfs—drawing on work of previous authors—and complete the theory with two main new results. The first provides a characterisation of awfs and their morphisms in terms of their double categories of left or right maps. The second concerns a notion of cofibrant generation of an awfs by a small double category; it states that, over a locally presentable base, any small double category cofibrantly generates an awfs, and that the awfs so arising are precisely those with accessible monad and comonad. Besides the general theory, numerous applications of awfs are developed, emphasising particularly those aspects which go beyond the non-algebraic situation.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info