FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BEDNÁŘ David BEERENS Koen ŠEBESTOVÁ Eva BENDL Jaroslav KHARE S. CHALOUPKOVÁ Radka PROKOP Zbyněk BREZOVSKÝ Jan BAKER D. DAMBORSKÝ Jiří

Year of publication 2015
Type Article in Periodical
Magazine / Source PLOS COMPUTATIONAL BIOLOGY
MU Faculty or unit

Faculty of Science

Citation
web http://loschmidt.chemi.muni.cz/peg/wp-content/uploads/2015/11/Bednar_2015ploscb1.pdf
Doi http://dx.doi.org/10.1371/journal.pcbi.1004556
Field Biochemistry
Keywords FireProt;haloalkane dehalogenase
Description There is great interest in increasing proteins’ stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt’s reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and gama-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (Tm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info