The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1, 3, 5-triphenylbenzene
Authors | |
---|---|
Year of publication | 2018 |
Type | Article in Periodical |
Magazine / Source | Chemosphere |
MU Faculty or unit | |
Citation | |
web | https://www.sciencedirect.com/science/article/pii/S0045653517321033?via%3Dihub |
Doi | http://dx.doi.org/10.1016/j.chemosphere.2017.12.127 |
Keywords | 1-3-5-triphenylbenzene; P-quaterphenyl; Co-combustion of wood and PE/PET plastic; PAHs; Emissions; Residential boiler |
Description | The aim of this study was to simulate a banned but widely spread practice of co-combustion of plastic with wood in a small residential boiler and to quantify its impact on emissions of gaseous pollutants, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and 1,3,5-triphenylbenzene (135TPB), a new tracer of polyethylene plastic combustion. Supermarket polyethylene shopping bags (PE) and polyethylene terephthalate bottles (PET) were burnt as supplementary fuels with beech logs (BL) in an old-type 20 kW over-fire boiler both at a nominal and reduced heat output. An impact of co-combustion was more pronounced at the nominal heat output: an increase in emissions of PM, total organic carbon (TOC), toxic equivalent (TEQ) of 7 carcinogenic PAHs (c-PAHs) and a higher ratio of c-PAHs TEQ in particulate phase was observed during co-combustion of both plastics. 135TPB was found in emissions from both plastics both at a nominal and reduced output. In contrast to findings reported in the literature, 135TPB was a dominant compound detected by mass spectrometry on m/z 306 exclusively in emissions from co-combustion of PE. Surprisingly, six other even more abundant compounds of unknown identity were found on this m/z in emissions from co-combustion of PET. One of these unknown compounds was identified as p-quaterphenyl (pQ). Principal component analysis revealed strong correlation among 135TPB, pQ and five unknown compounds. pQ seems to be suitable tracers of polyethylene terephthalate plastic co-combustion, while 135TPB proved its suitability to be an all-purpose tracer of polyethylene plastics combustion. |
Related projects: |