Conductive silver films on paper prepared by atmospheric pressure argon plasma conversion of silver nitrate
Authors | |
---|---|
Year of publication | 2021 |
Type | Article in Proceedings |
Conference | NANOCON 2020: 12th International Conference on Nanomaterials - Research & Application |
MU Faculty or unit | |
Citation | |
web | https://doi.org/10.37904/nanocon.2020.3725 |
Doi | http://dx.doi.org/10.37904/nanocon.2020.3725 |
Keywords | Conductive films; silver nitrate; reduction; argon plasma; nanocellulose |
Description | We present a novel approach for deposition of metallic silver films from silver nitrate (AgNO3) ink. The conversion of AgNO3 is induced by argon plasma of the diffuse coplanar surface barrier discharge (DCSBD) generated at atmospheric pressure. The macroscopically homogeneous and diffuse plasma of high power density allows fast reduction of AgNO3 into conductive metallic silver within two minutes. The process is carried out at temperatures below 70 °C and without the need for a complex vacuum chamber and is therefore highly suitable for deposition onto temperature-sensitive materials. In our study we used paper prepared from nanocellulose fibres, which offers mechanical flexibility, translucency and recyclability while having lower surface roughness and enhanced mechanical properties and thermal stability compared to regular paper. As a figure of merit, the resistivity of prepared films was measured. The X-ray photoelectron spectroscopy was used to study the conversion of AgNO3 into metallic silver. Scanning electron microscopy revealed the morphology of the surface of the films giving insight on the nucleation and the growth process. The silver films prepared according to our methodology are an attractive possibility for applications in sensing devices or as conductive lines and other features in flexible electronics. |
Related projects: |