Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

NOVÁKOVÁ Zuzana NOVÁK Jiří BITTNER Michal ČUPR Pavel PŘIBYLOVÁ Petra KUKUČKA Petr SMUTNÁ Marie ESCHER Beate I. DEMIRTEPE Hale MIRALLES MARCO Ana Maria HILSCHEROVÁ Klára

Year of publication 2022
Type Article in Periodical
Magazine / Source Journal of Hazardous Materials
MU Faculty or unit

Faculty of Science

Citation
web https://www.sciencedirect.com/science/article/pii/S0304389421022743?via%3Dihub
Doi http://dx.doi.org/10.1016/j.jhazmat.2021.127306
Keywords Indoor air; Dust; Endocrine disruption; Bioassay; Mixture
Description Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/ estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptormediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info