Estimating Suspended Sediment Fluxes from the Largest Glacial Lake in Svalbard to Fjord System Using Sentinel-2 Data: Trebrevatnet Case Study
Authors | |
---|---|
Year of publication | 2022 |
Type | Article in Periodical |
Magazine / Source | Water |
MU Faculty or unit | |
Citation | |
web | https://www.mdpi.com/2073-4441/14/12/1840 |
Doi | http://dx.doi.org/10.3390/w14121840 |
Keywords | sediment plumes; glacier meltwater; remote sensing; Sentinel-2; suspended sediment concentration; glacial lake; fjord; Arctic |
Description | Glacier-fed hydrological systems in high latitude regions experience high seasonal variation in meltwater runoff. The peak in runoff usually coincides with the highest air temperatures which drive meltwater production. This process is often accompanied by the release of sediments from within the glacier system that are transported and suspended in high concentrations as they reach the proglacial realm. Sediment-laden meltwater is later transported to the marine environment and is expressed on the surface of fjords and coastal waters as sediment plumes. Direct monitoring of these processes requires complex and time-intensive fieldwork, meaning studies of these processes are rare. This paper demonstrates the seasonal dynamics of the Trebrevatnet lake complex and evolution of suspended sediment in the lake and sediment plumes in the adjacent Ekmanfjorden. We use the Normalized Difference Suspended Sediment Index (NDSSI) derived from multi-temporal Sentinel-2 images for the period between 2016-2021. We propose a new SSL index combining the areal extent of the sediment plume with the NDSSI for quantification of the sediment influx to the marine environment. The largest observed sediment plume was recorded on 30 July 2018 and extended to more than 40 km(2) and a SSL index of 10.4. We identified the greatest sediment concentrations in the lake in the beginning of August, whereas the highest activity of the sediment plumes is concentrated at the end of July. The temporal pattern of these processes stays relatively stable throughout all ablation seasons studied. Sediment plumes observed with the use of optical satellite remote sensing data may be used as a proxy for meltwater runoff from the glacier-fed Trebrevatnet system. We have shown that remote-sensing-derived suspended sediment indexes can (after proper in situ calibration) serve for large scale quantification of sediment flux to fjord and coastal environments. |
Related projects: |