CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

PLŠEK Tomáš WERNER Norbert TOPINKA Martin SIMIONESCU Aurora

Year of publication 2024
Type Article in Periodical
Magazine / Source Monthly Notices of the Royal Astronomical Society
MU Faculty or unit

Faculty of Science

Citation
Web
Doi http://dx.doi.org/10.1093/mnras/stad3371
Keywords methods: data analysis; techniques: image processing; galaxies: active; galaxies: haloes; X-rays: galaxies
Description The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel machine-learning pipeline called Cavity Detection Tool (CADET), developed as an assistive tool that detects and estimates the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14percent at an 89percent true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5percent false-positive rate. When applied to real Chandra images, the pipeline recovered 93 out of 97 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered seven new cavity pairs in atmospheres of early-type galaxies (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, and NGC5129) and a number of potential cavity candidates.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info