Distance from main arteries influences microstructural and functional brain tissue characteristics

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Medicine. Official publication website can be found on muni.cz.
Authors

WEISS Viktor KOKOŠOVÁ Viktória VALENTA Zdenek DOLEŽALOVÁ Irena BALÁŽ Marek MANGIA Silvia MICHAELI Shalom VOJTÍŠEK Lubomír NESTRASIL Igor HERZIG Roman FILIP Pavel

Year of publication 2024
Type Article in Periodical
Magazine / Source Neuroimage
MU Faculty or unit

Faculty of Medicine

Citation
Web https://www.sciencedirect.com/science/article/pii/S1053811923006523?via%3Dihub
Doi http://dx.doi.org/10.1016/j.neuroimage.2023.120502
Keywords Quantitative MRI; Relaxometry; Diffusion weighted imaging; Resting -state functional MRI; Arterial distance
Description Given the substantial dependence of neurons on continuous supply of energy, the distribution of major cerebral arteries opens a question whether the distance from the main supply arteries constitutes a modulating factor for the microstructural and functional properties of brain tissue. To tackle this question, multimodal MRI acquisitions of 102 healthy volunteers over the full adult age span were utilised. Relaxation along a fictitious field in the rotating frame of rank n = 4 (RAFF4), adiabatic T1p, T2p, and intracellular volume fraction (fICVF) derived from diffusion-weighted imaging were implemented to quantify microstructural (cellularity, myelin density, iron concentration) tissue characteristics and degree centrality and fractional amplitude of low-frequency fluctuations to probe for functional metrics. Inverse correlation of arterial distance with robust homogeneity was detected for T1p, T2p and RAFF4 for cortical grey matter and white matter, showing substantial complex microstructural differences between brain tissue close and farther from main arterial trunks. Albeit with wider variability, functional metrics pointed to increased connectivity and neuronal activity in areas farther from main arteries. Surprisingly, multiple of these microstructural and functional distance-based gradients diminished with higher age, pointing to uniformization of brain tissue with ageing. All in all, this pilot study provides a novel insight on brain regionalisation based on artery distance, which merits further investigation to validate its biological underpinnings.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info