OSL-based chronology of the cold-climate aeolian sand dunes, Moravian Sahara, lower Morava Basin, Czechia

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

HOLUŠA Jakub MOSKA Piotr NÝVLT Daniel WORONKO Barbara

Year of publication 2024
Type Article in Periodical
Magazine / Source Quaternary Science Reviews
MU Faculty or unit

Faculty of Science

Citation
web https://www.sciencedirect.com/science/article/pii/S0277379124002191
Doi http://dx.doi.org/10.1016/j.quascirev.2024.108718
Keywords Dune field; Late glacial; Sand source; Periglacial processes; Central europe; Oldest dryas
Description The Moravian Sahara dune field located in southeastern Czechia represents a unique aeolian system preserving the Late Glacial environment. Until now, the main focus has been concentrated on defining its multigenerational development and examining the environmental factors controlling its formation. However, current studies have failed to bring robust chronologies, so environmental and temporal comparisons with the main aeolian phases in Europe could not be made. Here, we present a study combining chronological and environmental interpretations. To do so, four boreholes were drilled to obtain the samples for optically stimulated luminescence, quartz grain morphoscopy and sediment maturity estimation. The results show that the Moravian Sahara dune field developed episodically between the Last Glacial Maximum (LGM) and Younger Dryas, with the peak occurring during the Oldest Dryas. Quartz grain analysis revealed that the phases of wind-blown sand deposition were short and that the dune sediments had three different sources. Furthermore, it appears that the katabatic winds propagated to the study area during the LGM and Late Pleniglacial and were replaced by westerlies since the Oldest Dryas. Finally, the chronology of aeolian activity in the study area shows that Moravian Sahara dune field development was antecedent to the European Sand Belt and shares more similarities with the landforms in the Carpathian Basin located further south.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info