Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding

Investor logo
Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

FOREMAN Amy L. WARTH Benedikt HESSEL Ellen V. S. PRICE Elliott James SCHYMANSKI Emma L. CANTELLI Gaia PARKINSON Helen HECHT Helge KLÁNOVÁ Jana VLAANDEREN Jelle HILSCHEROVÁ Klára VRIJHEID Martine VINEIS Paolo ARAUJO Rita BAROUKI Robert VERMEULEN Roel LANONE Sophie BRUNAK Soren SEBERT Sylvain KARJALAINEN Tuomo

Year of publication 2024
Type Article in Periodical
Magazine / Source ENVIRONMENTAL SCIENCE & TECHNOLOGY
MU Faculty or unit

Faculty of Science

Citation
Web https://pubs.acs.org/doi/10.1021/acs.est.3c07961
Doi http://dx.doi.org/10.1021/acs.est.3c07961
Keywords Exposome; Molecular Biology; Toxicology; Human Health; Exposure; GxE; Environment
Attached files
Description Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info