Statistical techniques for edge detection in histological images

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Informatics. Official publication website can be found on muni.cz.
Authors

SVOBODA David WILLIAMS Ian BOWRING Nicholas GUEST Elizabeth

Year of publication 2006
Type Article in Proceedings
Conference First International Conference on Computer Vision Theory and Applications
MU Faculty or unit

Faculty of Informatics

Citation
Field Use of computers, robotics and its application
Keywords edge detection; statistical tests; image analysis
Description A review of the statistical techniques available for performing edge detection on histological images is presented. The tests under review include the Student's T Test, the Fisher test, the Chi Square test, the Kolmogorov Smirnov test, and the Mann Whitney U test. All utilize a novel two sample edge detector to compare the statistical properties of two image regions surrounding a central pixel. The performance of the statistical tests is compared using histological biomedical images on which traditional gradient based techniques are not as successful, therefore giving an overall review of the methods, and results. Comparisons are also made to the more traditional Canny and Sobel, edge detection filters. The results show that in the presence of noise and clutter in histological images both parametric and non-parametric statistical tests compare well robustly extracting edge information on a series images.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info