CARBON AND NITROGEN ACTIVITIES OF MATERIALS OF WELD JOINTS

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

HODIS Zdeněk SOPOUŠEK Jiří

Year of publication 2006
Type Article in Proceedings
Conference IXth Seminar on diffusion and thermodynamics of materials
MU Faculty or unit

Faculty of Science

Citation
Field Physical chemistry and theoretical chemistry
Keywords Equilibria;Calphad;DICTRA; weld;steel;heat-resistant
Description The demand for higher efficiency of energy production in fossil fired power stations goes to increasing of the working temperatures, which rich up to 625stC now. This limitation is given by creep properties of the materials used for steam turbines and the other parts under long high-temperature exploitation. The most widely used materials for this permanent services remain steels. From thermodynamic points of view, the steels can be thermodynamically treated as Fe-Me-N-C based closed systems where Me means metal elements (Cr, V, Mo, ...), N is nitrogen and C is carbon. Phase diagrams and temperature dependent carbon and nitrogen activities of the steels can be calculated using CALPHAD approach, which is based on semiempirical thermodynamic model of the multicomponent/multiphase system and thermodynamic condition of phase equilibrium. The activities of the all elements can be obtained during mathematical solution. In this contribution, the CALPHAD method is applied for an investigation of the heterogeneous welds, for baitic and martensitic base materials (P23, P24, P92 ..) and for electrodes and filler weld alloys (E911, VM12...). The results - calculated carbon and nitrogen activity temperature dependences are very important for a design of dissimilar weld joints.This information is essential, for example, for time-life estimations of the heterogeneous welds under high temperature creep.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info