Segmentation of Touching Cell Nuclei using a Two-Stage Graph Cut Model
Authors | |
---|---|
Year of publication | 2009 |
Type | Article in Proceedings |
Conference | 16th Scandinavian Conference on Image Analysis |
MU Faculty or unit | |
Citation | |
Web | http://dx.doi.org/10.1007/978-3-642-02230-2_42 |
Doi | http://dx.doi.org/10.1007/978-3-642-02230-2_42 |
Field | Informatics |
Keywords | image segmentation; cell nuclei cluster separation; graph cuts; energy minimization |
Description | Methods based on combinatorial graph cut algorithms received a lot of attention in the recent years for their robustness as well as reasonable computational demands. These methods are built upon an underlying maximum a posteriori estimation of Markov random fields and are suitable to solve accurately many different problems in image analysis, including image segmentation. In this paper we propose a two-stage graph cut based model for segmentation of touching cell nuclei in fluorescence microscopy images. In the first stage voxels with very high probability of being foreground or background are found and separated by a boundary with a minimal geodesic length. In the second stage the obtained clusters are split into isolated cells by combining image gradient information and incorporated a priori knowledge about the shape of the nuclei. Moreover, these two qualities can be easily balanced using a single user parameter. Preliminary tests on real data show promising results of the method. |
Related projects: |