Engineering the cytokinin-glucoside specificity of the maize beta-D-glucosidase Zm-p60.1 using site-directed random mutagenesis

Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

FILIPI Tomáš MAZURA Pavel JANDA Lubomír KIRAN Nagavalli Subbanna BRZOBOHATÝ Břetislav

Year of publication 2012
Type Article in Periodical
Magazine / Source Phytochemistry
MU Faculty or unit

Central European Institute of Technology

Citation
Doi http://dx.doi.org/10.1016/j.phytochem.2011.10.008
Field Biochemistry
Keywords (alpha/beta)(8) Barrel; beta-Glucosidase; cis-Zeatin-O-beta-D-glucopyranoside; Cytokinin metabolism; Glycosidase; Protein engineering; Site-directed random mutagenesis; Substrate specificity; trans-Zeatin-O-beta-D-glucopyranoside; trans-Zeatin-9-beta-D-glucopyranoside
Description The maize beta-D-glucosidase Zm-p60.1 releases active cytokinins from their storage/transport forms, and its over-expression in tobacco disrupts zeatin metabolism. The role of the active-site microenvironment in fine-tuning Zm-p60.1 substrate specificity has been explored, particularly in the W373K mutant, using site-directed random mutagenesis to investigate the influence of amino acid changes around the 373 position. Two triple (P372T/W373K/M376L and P372S/W373K/M376L) and three double mutants (P372T/W373K, P372S/W373K and W373K/M376L) were prepared. Their catalytic parameters with two artificial substrates show tight interdependence between substrate catalysis and protein structure. P372T/W373K/M376L exhibited the most significant effect on natural substrate specificity: the ratio of hydrolysis of cis-zeatin-O-beta-D-glucopyranoside versus the trans-zeatin-O-beta-D-glucopyranoside shifted from 1.3 in wild-type to 9.4 in favor of the cis- isomer. The P372T and M376L mutations in P372T/W373K/M376L also significantly restored the hydrolytic velocity of the W373K mutant, up to 60% of wild-type velocity with cis-zeatin-O-beta-D-glucopyranoside. These findings reveal complex relationships among amino acid residues that modulate substrate specificity and show the utility of site-directed random mutagenesis for changing and/or fine-tuning enzymes. Preferential cleavage of specific isomer-conjugates and the capacity to manipulate such preferences will allow the development of powerful tools for detailed probing and fine-tuning of cytokinin metabolism in planta. (C) 2011 Elsevier Ltd. All rights reserved.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info