Application of Thomas-Reiche-Kuhn sum rule to construction of advanced dispersion models

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

FRANTA Daniel NEČAS David ZAJÍČKOVÁ Lenka

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Thin Solid Films
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://dx.doi.org/10.1016/j.tsf.2013.01.081
Doi http://dx.doi.org/10.1016/j.tsf.2013.01.081
Obor Fyzika pevných látek a magnetismus
Klíčová slova Sum rule; Optical constants; Dispersion model
Přiložené soubory
Popis The classical f-sum rule is generalized using quantum mechanical Thomas–Reiche–Kuhn sum rule to include nucleonic contribution, i.e. lattice vibrations. The sum rule is formulated for the transition strength function defined as a continuous condensed-matter equivalent of the oscillator strength known for discrete transitions in atomic spectra. The application of such formulated sum rule allows construction of dispersion models containing a fitting parameter directly related to the atomic density of material. The dielectric response expressed using the transition strength function is split into individual contributions such as direct and indirect electronic interband transitions including excitonic effect, excitations of electrons to the high-energy states existing above the conduction band, core-electron excitations and phonon absorption. The presented models reflect understanding of structure of disordered and crystalline materials on the basis of quantum theory of solids. The usual term ‘joint density of states’, that should be used only for electronic transitions in the one-electron approximation, is replaced by the more general term ‘transition density’.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info