Paraphrase and Textual Entailment Generation in Czech

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NEVĚŘILOVÁ Zuzana

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Computación y Sistemas
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.13053/CyS-18-3-2040
Doi http://dx.doi.org/10.13053/CyS-18-3-2040
Obor Informatika
Klíčová slova Games with a purpose; paraphrase; textual entailment; natural language generation
Přiložené soubory
Popis Paraphrase and textual entailment generation can support natural language processing (NLP) tasks that simulate text understanding, e.g., text summarization, plagiarism detection, or question answering. A paraphrase, i.e., a sentence with the same meaning, conveys a certain piece of information with new words and new syntactic structures. Textual entailment, i.e., an inference that humans will judge most likely true, can employ real-world knowledge in order to make some implicit information explicit. Paraphrases can also be seen as mutual entailments. We present a new system that generates paraphrases and textual entailments from a given text in the Czech language. First, the process is rule-based, i.e., the system analyzes the input text, produces its inner representation, transforms it according to transformation rules, and generates new sentences. Second, the generated sentences are ranked according to a statistical model and only the best ones are output. The decision whether a paraphrase or textual entailment is correct or not is left to humans. For this purpose we designed an annotation game based on a conversation between a detective (the human player) and his assistant (the system). The result of such annotation is a collection of annotated pairs text–hypothesis. Currently, the system and the game are intended to collect data in the Czech language. However, the idea can be applied for other languages. So far, we have collected 3,321 H–T pairs. From these pairs, 1,563 were judged correct (47.06 %), 1,238 (37.28 %) were judged incorrect entailments, and 520 (15.66 %) were judged non-sense or unknown.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info