Charge transport in two dimensions limited by strong short-range scatterers: Going beyond parabolic dispersion and Born approximation

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŠOPÍK Břetislav KAILASVUORI J. TRUSHIN M.

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Physical Review B
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://arxiv.org/pdf/1401.6178v2.pdf
Doi http://dx.doi.org/10.1103/PhysRevB.89.165308
Obor Fyzika pevných látek a magnetismus
Klíčová slova SINGLE DIRAC CONE; TRILAYER GRAPHENE; RHOMBOHEDRAL GRAPHITE; TOPOLOGICAL-INSULATOR; BILAYER GRAPHENE; BAND STRUCTURE; BERRYS PHASE; GAP; FERMIONS; SURFACE
Popis We investigate the conductivity of charge carriers confined to a two-dimensional system with the nonparabolic dispersion k(N) with N being an arbitrary natural number. A delta-shaped scattering potential is assumed as the major source of disorder. We employ the exact solution of the Lippmann-Schwinger equation to derive an analytical Boltzmann conductivity formula valid for an arbitrary scattering potential strength. The range of applicability of our analytical results is assessed by a numerical study based on the finite size Kubo formula. We find that for any N > 1, the conductivity demonstrates a linear dependence on the carrier concentration in the limit of a strong scattering potential strength. This finding agrees with the conductivity measurements performed recently on chirally stacked multilayer graphene where the lowest two bands are nonparabolic and the adsorbed hydrocarbons might act as strong short-range scatterers.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info