Markov Decision Processes with Multiple Long-Run Average Objectives

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BRÁZDIL Tomáš BROŽEK Václav CHATTERJEE Krishnendu FOREJT Vojtěch KUČERA Antonín

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Logical Methods in Computer Science
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://www.lmcs-online.org/
Doi http://dx.doi.org/10.2168/LMCS-10(1:13)2014
Obor Informatika
Klíčová slova Markov decision processes; mean-payoff reward; multi-objective optimisation; formal verification
Popis We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for epsilon-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas memoryless randomized strategies are sufficient for epsilon-approximation, for all epsilon>0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of limit-average functions, for all epsilon>0. Our analysis also reveals flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, corrects the flaws, and allows us to obtain improved results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info