The Groupoid-Based Logic for Lattice Effect Algebras
| Autoři | |
|---|---|
| Rok publikování | 2017 |
| Druh | Článek ve sborníku |
| Konference | 2017 IEEE 47TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2017) |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7964996 |
| Doi | https://doi.org/10.1109/ISMVL.2017.15 |
| Obor | Obecná matematika |
| Klíčová slova | D-poset; effect algebra; lattice effect algebra; antitone involution; effect groupoid; groupoid-based logic |
| Popis | The aim of the paper is to establish a certain logic corresponding to lattice effect algebras. First, we answer a natural question whether a lattice effect algebra can be represented by means of a groupoid-like structure. We establish a one-to-one correspondence between lattice effect algebras and certain groupoids with an antitone involution. Using these groupoids, we are able to introduce a suitable logic for lattice effect algebras. |
| Související projekty: |