Segmentation of Actin-Stained 3D Fluorescent Cells with Filopodial Protrusions using Convolutional Neural Networks

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CASTILLA Carlos MAŠKA Martin SOROKIN Dmitry MEIJERING Erik ORTIZ-DE-SOLORZANO Carlos

Rok publikování 2018
Druh Článek ve sborníku
Konference 15th IEEE International Symposium on Biomedical Imaging
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1109/ISBI.2018.8363605
Doi http://dx.doi.org/10.1109/ISBI.2018.8363605
Klíčová slova Cell segmentation; Convolutional Neural Networks; Chan-Vese model; Filopodia
Popis We present the architecture, training strategy and evaluation of a convolutional neural network (CNN) designed for the segmentation of actin-stained cells in 3D+t confocal microscopy image data. The segmentation performance of the CNN is evaluated using time-lapse sequences of lung adenocarcinoma cells with three genetically distinct variants of the tubulin adaptor protein, a key protein in the process of assembly of the cell cytoskeleton, displaying three different phenotypes in regards to the morphology of the cells and in particular, to the number and length of filopodial structures. We show that the CNN significantly outperforms a baseline method based on the minimization of the Chan-Vese model using graph cuts, and we discuss the inherent benefits of using the CNN over the baseline method.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info