3-D Quantification of Filopodia in Motile Cancer Cells

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CASTILLA Carlos MAŠKA Martin SOROKIN Dmitry MEIJERING Erik ORTIZ-DE-SOLÓRZANO Carlos

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj IEEE Transactions on Medical Imaging
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1109/TMI.2018.2873842
Doi http://dx.doi.org/10.1109/TMI.2018.2873842
Klíčová slova Filopodium segmentation and tracking;actin cytoskeleton;confocal microscopy;3D skeletonization;Chan-Vese model;convolutional neural network;deep learning
Popis We present a 3D bioimage analysis workflow to quantitatively analyze single, actin-stained cells with filopodial protrusions of diverse structural and temporal attributes, such as number, length, thickness, level of branching, and lifetime, in time-lapse confocal microscopy image data. Our workflow makes use of convolutional neural networks trained using real as well as synthetic image data, to segment the cell volumes with highly heterogeneous fluorescence intensity levels and to detect individual filopodial protrusions, followed by a constrained nearest-neighbor tracking algorithm to obtain valuable information about the spatio-temporal evolution of individual filopodia. We validated the workflow using real and synthetic 3-D time-lapse sequences of lung adenocarcinoma cells of three morphologically distinct filopodial phenotypes and show that it achieves reliable segmentation and tracking performance, providing a robust, reproducible and less time-consuming alternative to manual analysis of the 3D+t image data.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info