Constant curvature models in sub-Riemannian geometry

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ALEKSEEVSKIY Dmitry MEDVEDEV Alexandr SLOVÁK Jan

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Geometry and Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Full Text
Doi http://dx.doi.org/10.1016/j.geomphys.2018.09.013
Klíčová slova Curvature; SubRiemannian geometry; Lie algebra cohomology; Constant curvature spaces
Popis Each sub-Riemannian geometry with bracket generating distribution enjoys a background structure determined by the distribution itself. At the same time, those geometries with constant sub-Riemannian symbols determine a unique Cartan connection leading to their principal invariants. We provide cohomological description of the structure of these curvature invariants in the cases where the background structure is one of the parabolic geometries. As an illustration, constant curvature models are discussed for certain sub-Riemannian geometries.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info