Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

VAŇÁČEK Pavel ŠEBESTOVÁ Eva BABKOVÁ Petra NEVOLOVÁ Šárka DANIEL Lukáš DVOŘÁK Pavel ŠTĚPÁNKOVÁ Veronika CHALOUPKOVÁ Radka BREZOVSKÝ Jan PROKOP Zbyněk DAMBORSKÝ Jiří

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj ACS Catalysis
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://dx.doi.org/10.1021/acscatal.7b03523
Doi http://dx.doi.org/10.1021/acscatal.7b03523
Klíčová slova diversity; sequence space; bioinformatics; biocatalyst; biochemical characterization; activity; substrate specificity; haloalkane dehalogenases
Popis Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Here, we describe an integrated system for automated in silico screening and systematic characterization of diverse family members. The workflow consists of (i) identification and computational characterization of relevant genes by sequence/structural bioinformatics, (ii) expression analysis and activity screening of selected proteins, and (iii) complete biochemical/biophysical characterization and was validated against the haloalkane dehalogenase family. The sequence-based search identified 658 potential dehalogenases. The subsequent structural bioinformatics prioritized and selected 20 candidates for exploration of protein functional diversity. Out of these 20, the expression analysis and the robotic screening of enzymatic activity provided 8 soluble proteins with dehalogenase activity. The enzymes discovered originated from genetically unrelated Bacteria, Eukaryota, and also Archaea. Overall, the integrated system provided biocatalysts with broad catalytic diversity showing unique substrate specificity profiles, covering a wide range of optimal operational temperature from 20 to 70 degrees C and an unusually broad pH range from 5.7 to 10. We obtained the most catalytically proficient native haloalkane dehalogenase enzyme to date (k(cat)/K-0.5 = 96.8 mM(-1) s(-1) the most thermostable enzyme with melting temperature 71 degrees C, three different cold-adapted enzymes showing dehalogenase activity at near-to-zero temperatures, and a biocatalyst degrading the warfare chemical sulfur mustard. The established strategy can be adapted to other enzyme families for exploration of their biocatalytic diversity in a large sequence space continuously growing due to the use of next-generation sequencing technologies.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info