Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

HOPE Tuva R. SELNES Per REKTOROVÁ Irena ANDERKOVÁ Ľubomíra NĚMCOVÁ ELFMARKOVÁ Nela BALÁŽOVÁ Zuzana DALE Anders BJORNERUD Atle FLADBY Tormod

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Plos one
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217922&type=printable
Doi http://dx.doi.org/10.1371/journal.pone.0217922
Klíčová slova Parkinson's disease; neurodegeneration; diffusion tensor imaging; restriction spectrum imaging
Popis To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm(2). Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm(2) (fractional anisotropy (FA), Axial-, Mean-and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info