Big Data Platform for Smart Grids Power Consumption Anomaly Detection

Logo poskytovatele
Autoři

LIPČÁK Peter MACÁK Martin ROSSI Bruno

Rok publikování 2019
Druh Článek ve sborníku
Konference Proceedings of the 2019 Federated Conference on Computer Science and Information Systems
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www https://ieeexplore.ieee.org/document/8859779
Doi http://dx.doi.org/10.15439/2019F210
Klíčová slova Computer architecture; Big Data; Smart meters; Real-time systems; Power demand; Energy management; Anomaly detection
Popis Big data processing in the Smart Grid context has many large-scale applications that require real-time data analysis (e.g., intrusion and data injection attacks detection, electric device health monitoring). In this paper, we present a big data platform for anomaly detection of power consumption data. The platform is based on an ingestion layer with data densification options, Apache Flink as part of the speed layer and HDFS/KairosDB as data storage layers. We showcase the application of the platform to a scenario of power consumption anomaly detection, benchmarking different alternative frameworks used at the speed layer level (Flink, Storm, Spark).
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info