Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

VYŠKOVSKÝ Roman SCHWARZ Daniel KAŠPÁREK Tomáš

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Neural Computation
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www http://dx.doi.org/10.1162/neco_a_01180
Doi http://dx.doi.org/10.1162/neco_a_01180
Klíčová slova brain morphometry; schizophrenia; magnetic resonance imaging
Popis Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info