Temperature dependent dispersion models applicable in solid state physics

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

FRANTA Daniel VOHÁNKA Jiří ČERMÁK Martin FRANTA Pavel OHLÍDAL Ivan

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Electrical Engineering
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.2478/jee-2019-0036
Doi http://dx.doi.org/10.2478/jee-2019-0036
Klíčová slova temperature dependent dielectrics dispersion model;Kramers-Kronig relation;crystalline silicon
Popis Dispersion models are necessary for precise determination of the dielectric response of materials used in optical and microelectronics industry. Although the study of the dielectric response is often limited only to the dependence of the optical constants on frequency, it is also important to consider its dependence on other quantities characterizing the state of the system. One of the most important quantities determining the state of the condensed matter in equilibrium is temperature. Introducing temperature dependence into dispersion models is quite challenging. A physically correct model of dielectric response must respect three fundamental and one supplementary conditions imposed on the dielectric function. The three fundamental conditions are the time-reversal symmetry, Kramers-Kronig consistency and sum rule. These three fundamental conditions are valid for any material in any state. For systems in equilibrium there is also a supplementary dissipative condition. In this contribution it will be shown how these conditions can be applied in the construction of temperature dependent dispersion models. Practical results will be demonstrated on the temperature dependent dispersion model of crystalline silicon.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info