Nuclei and conuclei on Girard posets

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

PASEKA Jan KRUML David

Rok publikování 2019
Druh Článek ve sborníku
Konference Atlantis Studies in Uncertainty Modelling, volume 1
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://download.atlantis-press.com/article/125914812.pdf
Doi http://dx.doi.org/10.2991/eusflat-19.2019.42
Klíčová slova Residuated poset; Frobenius poset; Girard poset; Girard quantale; quantic nucleus; quantic conucleus; ideal conucleus
Popis It is well-known that the semantics of a given fuzzy logic can be formally axiomatized by means of a residuated poset. Based on a notion of dualizing (cyclic) element we introduce the notion of a Frobenius (Girard) poset. With this paper we hope to contribute to the theory of Frobenius posets and Girard posets. By means of a dualizing element we establish a one-to-one correspondence between a Frobenius poset and its opposite which is again a Frobenius poset. We also investigate some properties of nuclei and conuclei on Girard posets. Finally, we discuss the relation between quantic nuclei and ideal conuclei on a Girard poset and its opposite. We show that they are in one-to-one correspondence.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info