Efficient Retrieval of Human Motion Episodes Based on Indexed Motion-Word Representations

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BUDÍKOVÁ Petra SEDMIDUBSKÝ Jan HORVÁTH Ján ZEZULA Pavel

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Semantic Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://dx.doi.org/10.1142/S1793351X21400031
Doi http://dx.doi.org/10.1142/S1793351X21400031
Klíčová slova human motion data; motion episodes; text-based processing; indexing
Popis With the increasing availability of human motion data captured in the form of 2D or 3D skeleton sequences, more complex motion recordings need to be processed. In this paper, we focus on similarity-based indexing and efficient retrieval of motion episodes - medium-sized skeleton sequences that consist of multiple semantic actions and correspond to some logical motion unit (e.g., a figure skating performance). As a first step towards efficient retrieval, we apply the motion-word technique to transform spatio-temporal skeleton sequences into compact text-like documents. Based on these documents, we introduce a two-phase retrieval scheme that first finds a set of candidate query results and then re-ranks these candidates with more expensive application-specific methods. We further index the motion-word documents using inverted files, which allows us to retrieve the candidate documents in an efficient and scalable manner. We also propose additional query-reduction techniques that accelerate both the retrieval phases by removing semantically irrelevant parts of the motion query. Experimental evaluation is used to analyze the effects of the individual proposed techniques of the retrieval efficiency and effectiveness.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info