Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

MAREČEK Radek ŘÍHA Pavel BARTOŇOVÁ Michaela KOJAN Martin LAMOŠ Martin GAJDOŠ Martin VOJTÍŠEK Lubomír MIKL Michal BARTOŇ Marek DOLEŽALOVÁ Irena PAIL Martin STRÝČEK Ondřej PAŽOURKOVÁ Marta BRÁZDIL Milan REKTOR Ivan

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Human Brain mapping
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25413
Doi http://dx.doi.org/10.1002/hbm.25413
Klíčová slova data fusion; neuroimaging; nonlesional epilepsy; seizure onset zone
Popis Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info