Coloring graphs by translates in the circle

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CANDELA Pablo CATALÁ Carlos HANCOCK Robert Arthur KABELA Adam KRÁĽ Daniel LAMAISON VIDARTE Ander VENA Lluís

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1016/j.ejc.2021.103346
Doi http://dx.doi.org/10.1016/j.ejc.2021.103346
Klíčová slova chromatic numbers
Popis The fractional and circular chromatic numbers are the two most studied non-integral refinements of the chromatic number of a graph. Starting from the definition of a coloring base of a graph, which originated in work related to ergodic theory, we formalize the notion of a gyrocoloring of a graph: the vertices are colored by translates of a single Borel set in the circle group, and neighboring vertices receive disjoint translates. The corresponding gyrochromatic number of a graph always lies between the fractional chromatic number and the circular chromatic number. We investigate basic properties of gyrocolorings. In particular, we construct examples of graphs whose gyrochromatic number & nbsp;is strictly between the fractional chromatic number and the circular chromatic number. We also establish several equivalent definitions of the gyrochromatic number, including a version involving all finite abelian groups.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info