ObservableDB: An Inverted Index for Graph-Based Traversal of Cyber Threat Intelligence

Autoři

TOVARŇÁK Daniel ČECH Michal TICHÝ Dušan DOHNAL Vojtěch

Rok publikování 2022
Druh Článek ve sborníku
Konference Proceedings of the IEEE/IFIP Network Operations and Management Symposium 2022
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www https://doi.org/10.1109/NOMS54207.2022.9789882
Doi http://dx.doi.org/10.1109/NOMS54207.2022.9789882
Klíčová slova cyber threat intelligence; security; GraphQL
Popis In this paper, we address the lack of analytical tools and search interfaces, which would help both humans and machines to navigate and correlate the floods of heterogeneous cyber threat intelligence (CTI) data generated every day. This work supports our long-term goal of machine-assisted discovery and inference of detectable indicators for adversarial tactics, techniques, and procedures from the available CTI. In particular, we present the idea of an observable database that works as an inverted index for CTI. This observable-centric concept is supported by a fully-functional practical result that leverages a meta-programming approach to auto-generate a graph-based API for data search and manipulation. The created prototype allows for powerful graph-based filtering, traversal and retrieval of the stored cyber observables and the referenced CTI.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info