Discrete symplectic systems, boundary triplets, and self-adjoint extensions

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZEMÁNEK Petr CLARK Stephen L.

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Dissertationes Mathematicae
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/114677/discrete-symplectic-systems-boundary-triplets-and-self-adjoint-extensions
Doi http://dx.doi.org/10.4064/dm838-12-2021
Klíčová slova discrete symplectic system; linear relation; self-adjoint extension; boundary triplets
Popis An explicit characterization of all self-adjoint extensions of the minimal linear relation associated with a discrete symplectic system is provided using the theory of boundary triplets with special attention paid to the quasiregular and limit point cases. A particular example of the system (the second order Sturm–Liouville difference equation) is also investigated thoroughly, while higher order equations or linear Hamiltonian difference systems are discussed briefly. Moreover, the corresponding gamma field and Weyl relations are established and their connection with the Weyl solution and the classical M(?)-function is discussed. To make the paper reasonably self-contained, an extensive introduction to the theory of linear relations, self-adjoint extensions, and boundary triplets is included.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info