The Poincare Lemma for Codifferential, Anticoexact Forms, and Applications to Physics

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KYCIA Radoslaw Antoni

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Results in Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s00025-022-01646-z
Doi http://dx.doi.org/10.1007/s00025-022-01646-z
Klíčová slova Poincare lemma; Codifferential; Anticoexact differential forms; Homotopy operator; Clifford bundle; Maxwell equations; Dirac operator; Kalb-Ramond equations; de Rham theory
Popis The linear homotopy theory for codifferential operator on Riemannian manifolds is developed in analogy to a similar idea for exterior derivative. The main object is the cohomotopy operator, which singles out a module of anticoexact forms from the module of differential forms defined on a star-shaped open subset of a manifold. It is shown that there is a direct sum decomposition of a differential form into coexact and anticoexat parts. This decomposition gives a new way of solving exterior differential systems. The method is applied to equations of fundamental physics, including vacuum Dirac-Kahler equation, coupled Maxwell-Kalb-Ramond system of equations occurring in a bosonic string theory and its reduction to the Dirac equation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info