Identification of Device Dependencies Using Link Prediction

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SADLEK Lukáš HUSÁK Martin ČELEDA Pavel

Rok publikování 2024
Druh Článek ve sborníku
Konference NOMS 2024 - 2024 IEEE/IFIP Network Operations and Management Symposium
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1109/NOMS59830.2024.10575713
Klíčová slova device dependency;link prediction;dependency embedding;network traffic analysis;graph-based analysis;random walk
Přiložené soubory
Popis Devices in computer networks cannot work without essential network services provided by a limited count of devices. Identification of device dependencies determines whether a pair of IP addresses is a dependency, i.e., the host with the first IP address is dependent on the second one. These dependencies cannot be identified manually in large and dynamically changing networks. Nevertheless, they are important due to possible unexpected failures, performance issues, and cascading effects. We address the identification of dependencies using a new approach based on graph-based machine learning. The approach belongs to link prediction based on a latent representation of the computer network’s communication graph. It samples random walks over IP addresses that fulfill time conditions imposed on network dependencies. The constrained random walks are used by a neural network to construct IP address embedding, which is a space that contains IP addresses that often appear close together in the same communication chain (i.e., random walk). Dependency embedding is constructed by combining values for IP addresses from their embedding and used for training the resulting dependency classifier. We evaluated the approach using IP flow datasets from a controlled environment and university campus network that contain evidence about dependencies. Evaluation concerning the correctness and relationship to other approaches shows that the approach achieves acceptable performance. It can simultaneously consider all types of dependencies and is applicable for batch processing in operational conditions.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info