Optimizing Local Satisfaction of Long-Run Average Objectives in Markov Decision Processes

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KLAŠKA David KUČERA Antonín KŮR Vojtěch MUSIL Vít ŘEHÁK Vojtěch

Rok publikování 2024
Druh Článek ve sborníku
Konference Proceedings of 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Paper URL
Doi http://dx.doi.org/10.1609/aaai.v38i18.29993
Klíčová slova Markov decision processes; invariant distribution
Přiložené soubory
Popis Long-run average optimization problems for Markov decision processes (MDPs) require constructing policies with optimal steady-state behavior, i.e., optimal limit frequency of visits to the states. However, such policies may suffer from local instability in the sense that the frequency of states visited in a bounded time horizon along a run differs significantly from the limit frequency. In this work, we propose an efficient algorithmic solution to this problem.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info