Self-training Language Models for Arithmetic Reasoning

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KADLČÍK Marek ŠTEFÁNIK Michal

Rok publikování 2024
Druh Článek ve sborníku
Konference Findings of the 2024 Conference on Empirical Methods in Natural Language Processing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Pre-print
Klíčová slova language models; arithmetic reasoning; self-training; implicit feedback; preference optimization
Popis Recent language models achieve impressive results in tasks involving complex multistep reasoning, but scaling these capabilities further traditionally requires expensive collection of more annotated data. In this work, we explore the potential of improving models' reasoning capabilities without new data, merely using automated feedback to the validity of their predictions in arithmetic reasoning (self-training). In systematic experimentation across six different arithmetic reasoning datasets, we find that models can substantially improve in both single-round (offline) and online self-training, reaching a correct result in +13.9% and +25.9% more cases, respectively, underlining the importance of actuality of self-training feedback. We further find that in the single-round, offline self-training, traditional supervised training can deliver gains comparable to preference optimization, but in online self-training, preference optimization methods largely outperform supervised training thanks to their superior stability and robustness on unseen types of problems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info