Representability of Kleene Posets and Kleene Lattices

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

CHAJDA Ivan LÄNGER Helmut PASEKA Jan

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Studia Logica
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s11225-023-10080-3
Doi http://dx.doi.org/10.1007/s11225-023-10080-3
Klíčová slova Kleene lattice; Normality condition; Kleene poset; Pseudo-Kleene poset; Representable Kleene lattice; Embedding; Twist-product; Dedekind-MacNeille completion
Popis A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Langer and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A) and a completion G(A) which coincides with DM(A) provided A is finite. In particular we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If the subset X of principal order ideals of A is involution-closed and doubly dense in G(A) then it generates G(A) and it is isomorphic to A itself.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info