Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

HRTOŇOVÁ Valentina NEJEDLÝ Petr TRAVNICEK Vojtech CIMBÁLNÍK Jan MATOUŠKOVÁ Barbora PAIL Martin PETER-DEREX Laure GROVA Christophe GOTMAN Jean HALAMEK Josef JURAK Pavel BRÁZDIL Milan KLIMES Petr FRAUSCHER Birgit

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Clinical Neurophysiology
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S1388245724003304?via%3Dihub
Doi http://dx.doi.org/10.1016/j.clinph.2024.11.007
Klíčová slova Epilepsy; Epileptogenic zone; Seizure onset zone; Epileptogenic tissue localization; Intracranial electroencephalography; Machine learning; Binary classification; Evaluation metrics; Class imbalance
Přiložené soubory
Popis Introduction: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the consistent evaluation of automatic machine learning localization models. Methods: This study addresses these challenges by analyzing class imbalance in clinical datasets and evaluating common assessment metrics. Data from 139 drug-resistant epilepsy patients across two Institutions were analyzed. Metric behaviors were examined using clinical and simulated data. Results: Complementary use of Area Under the Receiver Operating Characteristic (AUROC) and Area Under the Precision-Recall Curve (AUPRC) provides an optimal evaluation approach. This must be paired with an analysis of class imbalance and its impact due to significant variations found in clinical datasets. Conclusions: The proposed framework offers a comprehensive and reliable method for evaluating machine learning models in epileptogenic zone localization, improving their precision and clinical relevance. Significance: Adopting this framework will improve the comparability and multicenter testing of machine learning models in epileptogenic zone localization, enhancing their reliability and ultimately leading to better surgical outcomes for epilepsy patients.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info