The dimension of the feasible region of pattern densities

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GARBE Frederik KRÁĽ Daniel MALEKSHAHIAN Alexandru PENAGUIAO Raul

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematical Proceedings of the Cambridge Philosophical Society
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1017/S0305004124000380
Doi http://dx.doi.org/10.1017/S0305004124000380
Klíčová slova hypergraphs
Popis A classical result of Erd & odblac;s, Lov & aacute;sz and Spencer from the late 1970s asserts that the dimension of the feasible region of densities of graphs with at most k vertices in large graphs is equal to the number of non-trivial connected graphs with at most k vertices. Indecomposable permutations play the role of connected graphs in the realm of permutations, and Glebov et al. showed that pattern densities of indecomposable permutations are independent, i.e., the dimension of the feasible region of densities of permutation patterns of size at most k is at least the number of non-trivial indecomposable permutations of size at most k. However, this lower bound is not tight already for $k=3$ . We prove that the dimension of the feasible region of densities of permutation patterns of size at most k is equal to the number of non-trivial Lyndon permutations of size at most k. The proof exploits an interplay between algebra and combinatorics inherent to the study of Lyndon words.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info