Half-linear dynamic equations on time scales: IVP and oscillatory properties

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHÁK Pavel

Rok publikování 2002
Druh Článek v odborném periodiku
Časopis / Zdroj Nonlinear Functional Analysis and Applications
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Obor Obecná matematika
Klíčová slova Half-linear dynamic equation; time scale; measure chain; Roundabout theorem; Picone identity; Sturmian theory; Riccati technique; variational principle
Popis In this paper we show how the basic results of oscillation theory of the Sturm--Liouville linear differential equation $$ (r(t)y')'+p(t)y=0 $$ can be extended to the half-linear dynamic equation $$ (r(t)\Phi(y^\Delta))^\Delta+p(t)\Phi(y^\sigma)=0 \tag{HL$^\Delta$E} $$ on an arbitrary time scale, where $\Phi(x)=|x|^{\alpha-1}\sgn x$ with $\alpha>1$. In particular, the generalization of the so called Roundabout theorem is proved for equation (HL$^\triangle$E), which provides powerful tools for the investigation of oscillatory properties of this equation, namely the Riccati technique and variational principle. As an application we present Sturmian theory, oscillation and nonoscillation criteria for (HL$^\Delta$E). The questions concerning the existence and uniqueness of a solution of initial value problem are also discussed.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info