Undecidability of Bisimilarity by Defender's Forcing

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Název česky Nerozhodnutelnost bisimulace pomoci tlaku obránce
Autoři

JANČAR Petr SRBA Jiří

Rok publikování 2008
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of the ACM
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Obor Informatika
Klíčová slova undecidability; bisimilarity; rewrite systems
Popis tirling (1996, 1998) proved the decidability of bisimilarity on so-called normed pushdown processes. This result was substantially extended by Senizergues(1998, 2005) who showed the decidability of bisimilarity for regular (or equational) graphs of finite out-degree; this essentially coincides with weak bisimilarity of processes generated by (unnormed) pushdown automata where the epsilon-transitions can only deterministically pop the stack. The question of decidability of bisimilarity for the more general class of so called Type -1 systems, which is equivalent to weak bisimilarity on unrestricted epsilon-popping pushdown processes, was left open. This was repeatedly indicated by both Stirling and Senizergues. Here we answer the question negatively, that is, we show the undecidability of bisimilarity on Type -1 systems, even in the normed case. We achieve the result by applying a technique we call Defender's Forcing, referring to the bisimulation games. The idea is simple, yet powerful. We demonstrate its versatility by deriving further results in a uniform way. First, we classify several versions of the undecidable problems for prefix rewrite systems (or pushdown automata) as Pi^0_1-complete or Sigma^1_1-complete. Second, we solve the decidability question for weak bisimilarity on PA (Process Algebra) processes, showing that the problem is undecidable and even Sigma^1_1-complete. Third, we show Sigma^1_1-completeness of weak bisimilarity for so-called parallel pushdown (or multiset) automata, a subclass of (labeled, place/transition) Petri nets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info