A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

BATALIN Igor BERING LARSEN Klaus

Rok publikování 2009
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Mathematical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://arxiv.org/abs/0809.4269
Doi http://dx.doi.org/10.1063/1.3152575
Obor Teoretická fyzika
Klíčová slova Dirac Operator; Spin Representations; BV Field Antifield Formalism; Antisymplectic Geometry; Odd Laplacian
Popis We introduce an antisymplectic Dirac operator and antisymplectic gamma matrices. We explore similarities between, on one hand, the Schroedinger--Lichnerowicz formula for spinor bundles in Riemannian spin geometry, which contains a zeroth--order term proportional to the Levi--Civita scalar curvature, and, on the other hand, the nilpotent, Grassmann--odd, second--order \Delta operator in antisymplectic geometry, which in general has a zeroth--order term proportional to the odd scalar curvature of an arbitrary antisymplectic and torsionfree connection that is compatible with the measure density. Finally, we discuss the close relationship with the two--loop scalar curvature term in the quantum Hamiltonian for a particle in a curved Riemannian space.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info