19F Trp labelling as a selective probe into the dimeric interface

Investor logo

Warning

This publication doesn't include Institute of Computer Science. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

NÁPLAVOVÁ Alexandra KOZELEKOVÁ Aneta GAŠPARIK Norbert HRITZ Jozef

Year of publication 2022
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description The self-association of proteins is a fundamental mechanism in cell. The oligomerization offers a way of protein regulation, often broadening their functionality [1]. One of the rarest amino acids tryptophan (Trp) has a unique role in protein self-association [2]. It has been previously described that Trp is commonly present in so called dimerization hot spots partaking in dimer formation [3,4]. A method that could selectively focus on Trp could therefore offer a unique probe into protein dimerization. Nuclear magnetic resonance is a powerful tool in structural biology. Traditional double 13C, 15N labelling can be complemented by the 19F labelling which is a simple and straight-forward method [5]. The biggest advantage of 19F labelling is high signal intensity and a selective labelling of only chosen amino acid (usually Trp, Tyr or Phe), leading to less convoluted spectra without background noise. For these reasons, the 19F labelling may present a technique especially useful for determination of parameters connected to protein dimerization. In this work, we explore application of 19F Trp labelling on example of 14-3-3 proteins. The eukaryotic 14-3-3 proteins are important regulators involved in number of processes. Their dimeric form is crucial for proper function and the mechanism of dimer-ligand interaction has been thoroughly described [6]. Upon study of post-translational modifications, it has been discovered that phosphorylation of 14-3-3 at Ser58 located at dimeric interface leads to monomerization [7]. Intriguingly, residue neighbouring Ser58 is Trp59. We are thus comparing 19F Trp labelled dimeric 14-3-3 wild type and monomeric 14-3-3 phosphorylated at Ser58 and showing the possibilities that such labelling offers for study of dimerization.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.

More info