Ground state solutions to nonlinear equations with p-Laplacian

Logo poskytovatele

Varování

Publikace nespadá pod Ústav výpočetní techniky, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

DOŠLÁ Zuzana MATUCCI Serena

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0362546X19300410
Doi http://dx.doi.org/10.1016/j.na.2019.01.032
Klíčová slova Second order nonlinear differential equation; Ground state solution; Boundary value problem on the half-line
Popis We investigate the existence of positive radial solutions for a nonlinear elliptic equation with p-Laplace operator and sign-changing weight, both in superlinear and sublinear case. We prove the existence of solutions u, which are globally defined and positive outside a ball of radius R, satisfy fixed initial conditions u(R) = c > 0, u' (R) = 0 and tend to zero at infinity. Our method is based on a fixed point result for boundary value problems on noncompact intervals and on asymptotic properties of suitable auxiliary half-linear differential equations. The results are new also for the classical Laplace operator and may be used for proving the existence of ground state solutions and decaying solutions with exactly k-zeros which are defined in the whole space. Some examples illustrate our results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info